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Evolution model with a cumulative feedback coupling
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The paper is concerned with a toy model that generalizes the standard Lotka-Volterra equation for a certain
population by introducing a competition between instantaneous and accumulative, history-dependent nonlinear
feedback the origin of which could be a contribution from any kind of mismanagement in the past. The results
depend on the sign of that additional cumulative loss or gain term of strengthl. In case of a positive coupling
the system offers a maximum gain achieved after a finite time but the population will die out in the long time
limit. In this case the instantaneous loss term of strengthu is irrelevant and the model exhibits an exact
solution. In the opposite casel,0 the time evolution of the system is terminated in a crash afterts provided
u50. This singularity after a finite time can be avoided ifu5” 0. The approach may well be of relevance for the
qualitative understanding of more realistic descriptions.
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I. INTRODUCTION

A certain amount of moneyp(t) available for a financial
transaction depends apparently on the history of the sam
to which it belongs. A certain species of a population at ti
t should also depend on the population at previous tim
Furthermore, the time evolution of money or any specie
governed by nonlinearities that tend to avoid an unrestric
growing up. The interplay between birth and death proces
results in a finite stationary solution. Because the time e
lution of p(t) is determined by local time gain and loss pr
cesses the stationary value is reached after an infinite
interval. But a more real situation seems to wait for a fin
time to get a maximum gain~or loss!. After that time the
population proceeds further to evolute in time. To mod
such a situation the evolution equation has to change
significant manner. Generally the time evolution ofp(t) is
characterized by simultaneous competitive terms, i.e., at e
time t the change of the quantityp(t) is balanced by gain
and loss terms at the same timet. As the result of the com-
petition the system develops a finite stationary solution.
the present paper we extend the well-known Lotka-Volte
model by including an accumulative coupling of the mome
tary evolution to all the values taken in the past. Thus
time evolution of p(t) at time t is coupled to all former
events within the interval 0,t8,t. This can be realized by
constrained rates that depend on the quantityp(t) in a non-
linear cumulative manner. Such a huge yield of a cert
transaction or debts in the past should lead to a modi
evolution at present time. Guided by the aim to enhance
present asset the amount of relevant money changes in
To take the history dependence literally the evolution eq
tion for p(t) has to include a memory term that reflects t
way by which an initial asset has been accumulated, for
stance, by rates of interest, the yield, the business on
stock market. It means in other words that the changing
of money at timet is also determined by the accumulation
capital at a former timet8,t or simpler by the evolution
within the whole interval@0,t#. The owner of the capital is
in general, interested to augmentp(t). Regardless the fluc
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tuations the capital is subjected to the present availability
money and depends in a decisive manner on both the ins
taneous amount of money and on the gain or the loss
capital in the past. Hence, it seems to be worth studyin
financial model under inclusion of a feedback coupling.
the present paper we propose a model in which such a re
dation effect is taken into account that can be, moreo
studied within an analytical approach. The model yields
nontrivial result assuming that the memory kernel depe
on the amount of money itself. Obviously, such an assum
tion is rather realistic because the investment of capital in
past is strongly influenced by the accessible money at
time. Consequently, the problem will be formulated in a se
consistent manner. Furthermore, the time evolution may
controlled by a permanent coupling to the initial value
p(t50) denoted byp0.

Our model can be grouped into the increasing interes
applying concepts and methods of statistical physics to st
problems of biological evolution, for a recent review see@1#,
the financial market@2–4# and other complex systems from
heartbeats to weather@5#, to politics @6#, to medical care@7#,
and further to ecology@8#. Similar to statistical physics the
mentioned systems, such as economic ones, consist of a
number of interacting units~agents!. Hence, experience
gained by studying complex physical systems might yi
new results in economics. However, agents making finan
transactions are thinking units, the interactions of which
not quantified in detail. Consequently, economic systems
quite different and much more complex. Nevertheless,
evolution of financial data should be governed by laws a
methods well known in statistical mechanics. Apparen
various financial time series undergo random processe
particles making Brownian motions. Hence, one of the r
sons to analyze financial systems by methods developed
physical systems is the challenge of understanding the
namics of a strongly fluctuating system with a large num
of interacting elements@9,10#. Moreover, simple models ar
discussed whose origin lies in market scenario@11# and they
yield an unusual type of microdynamics of more gene
interest. Another approach related directly to our intentio
©2002 The American Physical Society06-1
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consists of modeling the dynamics of money directly@12#,
the dynamics of which is studied by an evolution equat
completely different to our one.

In the present paper we introduce an analytical model
a certain amount of moneyp(t) available for one owner
This money is a part of the total capital flow and, therefo
subjected to a lot of influences that cannot be specified
detail. Comparing with the situation in statistics the la
quantity corresponds to the many particle distribution fu
tion. Our interest is, however, devoted to a single ‘‘particl
function. Following the well established projector formalis
due to Ref.@13#, see also@14#, the reduced evolution equa
tion should offer an additonal memory kernel as successf
demonstrated in deriving a nonlinear evolution equation
Fokker-Planck type@15# the form and the relevance of whic
are discussed by analytical@15# and numerical methods@16#.
Notice that the approach had been very fruitful in study
the freezing processes in glasses@17,18#. We believe that
memory effects are a feature of dynamical complex syste

II. THE CUMULATIVE FEEDBACK COUPLING

The model considered is an extension of the Lot
Volterra model under the inclusion of a cumulative feedba
term. The simplest version is defined by

] tp~ t !5rp~ t !2up2~ t !2lp~ t !E
0

t

p~ t1!dt1 . ~1!

The first term corresponds to a gain term, the second one
loss term providedu.0. As demonstrated in the following
section the model can be solved exactly in case ofu50. The
last term describes a kind of meticulous memory. All chan
in the past such as mutations of the species or a clim
change leading to desertification or overfertilization result
in a salinization have an influence of the growth or de
rate. In the same sense a wrong financial investment
miscarried speculation contribute in a cumulative manne
the present disposable amount of money. The model
been discussed before in Ref.@19# to illustrate various math-
ematical methods that may be applied to solve such a n
linear model. Here, we want to discuss the physical real
tion and different special cases not so far considered bef
In particular, we study both casesl.0 as well asl,0.

If l50 the model can be even solved exactly. In the lo
time limit the model yields a finite stationary value

lim
t→`

p~ t ![ps5
r

u
if l50. ~2!

In the general case the model can be analyzed introdu
the variable

R~ t !5ulu E
0

t

dt1p~ t1!. ~3!

The basic Eq.~1! can be written in a phase space repres
tation as
05610
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] tp~ t !5p~ t !@r 2up~ t !7R~ t !#,

] tR~ t !5ulup~ t !, ~4!

where the upper sign corresponds tol.0. Apparently in this
case the memory term is the counterpart to the growth rar.
For the further discussion it seems to be more appropriat
use the set of Eqs.~4!. Using those equations one can eas
find a differential equation forp(R), the solution of which
reads

p~R!5S p02ps7
ulu

u2 D expS 2
u

ulu
RD1S ps6

ulu

u2
7

R

u D ,

~5!

where the upper sign corresponds to a positive cumula
parameterl.0. The set of coupled Eqs.~4! or the separatrix
~5! can be used to derive some general predictions for
complete model that will be discussed in the subsequent
tion. In the limting caseu→0 the separatrix is simply a
parabola

p~R!5p01
r

ulu
R7

1

2ulu
R2 ~6!

with p05p(t50). The caseu50 exhibts an exact solution
presented in the following section.

III. RESULTS

A. The caseuÄ0

Firstly let us consider the case when the instantane
loss term is absent, i.e.,u50. The solution of Eq.~1! with
the initial valuep0 is

p~ t !5p0

~11A!2et/t

~11Aet/t!2
with t5

1

Ar 212lp0

,

A5
12r t

11r t
. ~7!

Note that the result can be also extended to a more gen
memory term of the kindR(t)5ulu*0

t dt1pm(t1) with an ex-
ponentm>1. In that case the solution reads

p~ t !5p0

~11A!2/met/mt

~11Aet/t!2/m

with modified parametersA and t. The feature of this sim-
plified version of Eq.~1! with u50 is a direct coupling of
the instantaneous populationp(t) to its initial valuep0. This
coupling is further manifested in the two different cases d
cussed now.

~i! If r t,1, the parameterA is positive that is realized in
case oflp0.0. In Fig. 1 the analytical solution is depicte
as the solid line whereas the dotted line denotes the num
cal solution of the evolution equation. The slight discrepan
is due to the still rather large discretization interval. Starti
6-2
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FIG. 1. Analytical solution~solid line! of Eq.
~1! with u50 andp(0)50.1 vs a numerical so-
lution ~dotted line! with time-steps widthDt
50.1. All quantities are dimensionless.
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with a finite and positive initial valuep0.0 the system
reaches a maximum after a finite time

tm5
1

Ar 212lp0

lnFAr 212lp01r

Ar 212lp02r
G . ~8!

The maximum gain is

pm[p~ tm!2p05
r 2

2l
. ~9!

After reaching the maxima the cumulative term offers
toxic effect. The number of the population is decreased to
initial value after 2tm . In the long time limitt→` the popu-
lation becomes extinct~or the whole money is lost!. The bad
conditions summed up from the initial timet50 up to the
instantaneous timet favors the extinction. Notice that there
no slowing down of the relaxation time.

~ii ! If r t.1, realized forlp0,0 the system tends to
singular behavior after the finite timets[tm . The evolution
results in a crash after that finite time interval providedp0
.0. Whereas unfavorable external conditions withl.0
lead to the extinction the opposite case gives rise to the
gularity at which the evolution has to stop. Remark that
results presented here foru50 can be derived alternativel
using the separatrixp(R) given by Eq.~6! . To that aimp(R)
is inserted into the second Eq.~4!. As the solution we get
R(t) that is anew inserted in Eq.~4!. From here it results
p(t) in accordance with Eq.~7!. In particular, the singularity
observed for negativel is obtained from Eq.~4! by

ts5
1

ulu E0

`

dt1@p~ t1!#21[tm . ~10!

In case of a positivel the corresponding equation has no re
solution, i.e., there is no singular behavior in accorda
with Eq. ~8!.
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B. Additional loss term uÄ” 0

In this section we discuss the solution of the gene
model defined by Eq.~1!. For u5” 0 the coupled set of Eqs
~4! or alternatively the separatrixp(R) Eq. ~5!, can be used
to analyze the solution. The phase space portrait is prese
in Fig. 2. The arrows indicate that the solutions tend to
separatrix. As suggested by the special caseu50 we have to
distinguish a postive or negative coupling strengthl. In par-
ticular, for l,0 the cumulative term is a competitive one
comparison to the nonlinearu term in Eq. ~1!. In casel
.0 there occurs a maximump(Re) at

Re5
l

u
lnF11

u2

l
~ps2p0!G .

In case of a negative cumulative couplingl,0 it results a
minimum. Both cases can be summarized to

p~Re!5psS 17
ulu
ru

lnF16
u2

ulu ~ps2p0!G D . ~11!

If l.0 andps.p0, the extremum is always positive. Th
maximum gain is, however, smaller than the stationary so
tion ps , i.e., p0,p(Re),ps . In Fig. 3 we show the influ-
ence of the loss termup2 in Eq. ~1!. As discussed above th
populationp(t) reaches a maximum and tends to zero in
infinite time limit. The generic behavior is identical to th
for u50. Insofar, the parameteru is irrelevant. However,
some details as the height of the maximum and the time a
that the maximum is reached depends on u. The largeru the
smaller is the maximum gain. The numerical results depic
in Fig. 3 are in accordance with the analytical approach
cause we findp(Re),pm wherepm is given by Eq.~9!. In
particular, based on Eq.~5!, it results for smallu

p~Re!5pm2
ur

l Fp01
r 2

3lG1O~u2!.
6-3
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FIG. 2. Phase space portrait in thep-R plane
with ru/l53.
im

a
i
e

e
ta
h
o

m
-

ing
the
in
e
s
n

Furthermore, the maximum is reached after a shorter t
interval tm(u),tm(u50). In Fig. 4 the role played by the
cumulative loss terml.0 is analyzed. Whereas forl50
the stationary value, obtained fort→` is simply ps5r /u.
Already an arbitrary small cumulative couplingl.0 leads
to a toxic stationary solutionp(t→`)50. Any kind of mis-
managment in the past gives rise to a decay ofp(t). The
maximum value of the amount of money decreases with
increasing positive cumulative coupling. This result is also
accordance with the analytical findings. As discussed in S
III A a negative feedbackl,0 exhibits a crash after a finit
time interval. This situation reminds to the resonance ca
trophy for small vibrations. As in that case the catastrop
can be prevented by including a friction term the role
which is adopted by the termup2(t) in Eq. ~1!. Because Eq.
~1! is equivalent to a second order differential equation, co
pare also Eq.~14! it is appropriate to introduce the first in
tegral ~energy! by the relation
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1

2
S ṗ

p
D 2

6ulup5
1

2
ẇ21lew with w~ t !5 ln p~ t !.

~12!

We find

dE

dt
52F with F5u

ṗ2

p
~13!

using the complete basis equation~1!. The additional loss
term plays the role of a dissipative term. The correspond
equation of motion can be solved and is given in terms of
LambertW function. Let us further discuss the behavior
case ofl,0 andu5” 0. In Fig. 5 we show that the crash tim
ts , see Eq.~10!, is shifted to infinity. The slope of the curve
are proportional toulu/u, i.e., the population develops a
essential singularity with respect to the parameteru. It results
FIG. 3. Numerical solution of Eq.~1! with
fixed dimensionless parameterl51 and different
valuesu50.05;0.2;0.5;1.0;2.0;5.0.
6-4
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FIG. 4. Numerical solution of Eq.~1! with
fixed parameteru51 and different valuesl
50;0.05;0.1;0.2;0.5;1.0;2.0 in dimensionle
units.
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p(t)}exp(ulut/u). The numerical result can be confirmed b
an analytical approach. Starting with Eq.~1! or alternatively
with Eq. ~13! the basis equation reads in terms of the va
ablew(t)5 ln p(t)

d2w

dt2
1ewFu

dw

dt
1lG50. ~14!

An asymptotic solution is obviouslyẇ52l/u. A linear sta-
bility analysis reveals that the solution is stable ifl,0.
From here we conclude the asymptotic behavior

p~ t !}expS ulu
u

t D
according to Eq.~5!. In Fig. 5 the functionw(t) is presented
for different values of the parameteru. Whereas in caseu
50 a singular behavior is observed in line with the anaylti
result, an arbitrary small value ofu shifts the singularity to
ts→`. Therefore, in case of a negative cumulative feedb

FIG. 5. w(t)5 ln p(t) for negative l521 and different
paramtersu. The slope is given byl/u.
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coupling theu term is strongly relevant. This behavior
apparently because forl,0 there is only a single loss term
proportional top2.

Notice that one can verify the essential results of t
paper using a discrete version of our basis Eq.~1!. To that
aim let us replacep(t) by pn where t5nDt. Eq. ~1! is re-
written as

pn115~r 11!pn2~u1l!pn
22lpn~p01p11•••pn21!.

~15!

The fixed point of this equation reads for large n

p* .
r

u1lnDt
.

For l.0 we getp* [0 for n→`. In casel50 it results the
conventional stationary valuer /u. If l,0, the system re-
veals a singularity afterns5u/uluDt.

IV. CONCLUSIONS

In this paper we have made an attempt to study the t
evolution of a certain population available as initial popu
tion p0 under the influence of an additional cumulativ
memory term. However, there are also other motivatio
from ecology, economy, and politics for such a kind
model. Thus, the flow of the money is not only determin
by the actual input and output of the asset but in an esse
way by the accumulation rate at a previous time. Likewise
an election the vote is not only determined by some inst
taneous decisions but by a kind of feeling accumulated
decisions in the past. We are aware that the finding of
feedback coupling is a rather complex problem because
influenced by a lot of parameters which can change dur
the time evolution of the population. The parameters
fixed by the environment and all manipulations made in
past. Here, we consider a simple model where the grow
rate r is replaced by a time changing growing rater (t)5r
6-5
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7R(t), see Eq.~4! whereR(t) is a measure for all events i
the past and depends on the populationp(t) in a self-
consistent manner. Under the influence of this additio
term the behavior of the system is changed totally. The
ferent behavior is studied by analytical and numerical me
ods. The memory coupling is able to change the global
s

h.
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e
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y
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havior of the system in a nontrivial manner. Obviously, t
paper is concerned with a toy model, containing a sin
degree of freedom and no spatial variations. However, so
features as nonlinearity and a history-dependent accum
tive term should be likewise included also in more comp
models.
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