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Evolution model with a cumulative feedback coupling
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The paper is concerned with a toy model that generalizes the standard Lotka-Volterra equation for a certain
population by introducing a competition between instantaneous and accumulative, history-dependent nonlinear
feedback the origin of which could be a contribution from any kind of mismanagement in the past. The results
depend on the sign of that additional cumulative loss or gain term of strandthcase of a positive coupling
the system offers a maximum gain achieved after a finite time but the population will die out in the long time
limit. In this case the instantaneous loss term of strengik irrelevant and the model exhibits an exact
solution. In the opposite ca3e<0 the time evolution of the system is terminated in a crash &ftprovided
u=0. This singularity after a finite time can be avoided i 0. The approach may well be of relevance for the
qualitative understanding of more realistic descriptions.
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I. INTRODUCTION tuations the capital is subjected to the present availability of
money and depends in a decisive manner on both the instan-
A certain amount of monep(t) available for a financial taneous amount of money and on the gain or the loss of
transaction depends apparently on the history of the sampleapital in the past. Hence, it seems to be worth studying a
to which it belongs. A certain species of a population at timefinancial model under inclusion of a feedback coupling. In
t should also depend on the population at previous timeshe present paper we propose a model in which such a retar-
Furthermore, the time evolution of money or any species iglation effect is taken into account that can be, moreover,
governed by nonlinearities that tend to avoid an unrestrictedtudied within an analytical approach. The model yields a
growing up. The interplay between birth and death processeasontrivial result assuming that the memory kernel depends
results in a finite stationary solution. Because the time evoon the amount of money itself. Obviously, such an assump-
lution of p(t) is determined by local time gain and loss pro- tion is rather realistic because the investment of capital in the
cesses the stationary value is reached after an infinite timgast is strongly influenced by the accessible money at that
interval. But a more real situation seems to wait for a finitetime. Consequently, the problem will be formulated in a self-
time to get a maximum gaifor loss. After that time the  consistent manner. Furthermore, the time evolution may be
population proceeds further to evolute in time. To modelcontrolled by a permanent coupling to the initial value of
such a situation the evolution equation has to change in p(t=0) denoted byp,.
significant manner. Generally the time evolution p(ft) is Our model can be grouped into the increasing interest in
characterized by simultaneous competitive terms, i.e., at eacipplying concepts and methods of statistical physics to study
time t the change of the quantity(t) is balanced by gain problems of biological evolution, for a recent review &g
and loss terms at the same tirme\s the result of the com- the financial markef2—4] and other complex systems from
petition the system develops a finite stationary solution. Ireartbeats to weathgs], to politics[6], to medical carg7],
the present paper we extend the well-known Lotka-Volterraand further to ecology8]. Similar to statistical physics the
model by including an accumulative coupling of the momen-mentioned systems, such as economic ones, consist of a large
tary evolution to all the values taken in the past. Thus thenumber of interacting unit§agenty. Hence, experiences
time evolution ofp(t) at timet is coupled to all former gained by studying complex physical systems might yield
events within the interval €t’ <t. This can be realized by new results in economics. However, agents making financial
constrained rates that depend on the quamifty in a non-  transactions are thinking units, the interactions of which are
linear cumulative manner. Such a huge yield of a certaimot quantified in detail. Consequently, economic systems are
transaction or debts in the past should lead to a modifiequite different and much more complex. Nevertheless, the
evolution at present time. Guided by the aim to enhance thevolution of financial data should be governed by laws and
present asset the amount of relevant money changes in timmethods well known in statistical mechanics. Apparently,
To take the history dependence literally the evolution equavarious financial time series undergo random processes as
tion for p(t) has to include a memory term that reflects theparticles making Brownian motions. Hence, one of the rea-
way by which an initial asset has been accumulated, for insons to analyze financial systems by methods developed for
stance, by rates of interest, the yield, the business on thghysical systems is the challenge of understanding the dy-
stock market. It means in other words that the changing rateamics of a strongly fluctuating system with a large number
of money at time is also determined by the accumulation of of interacting elementg9,10]. Moreover, simple models are
capital at a former time&’<t or simpler by the evolution discussed whose origin lies in market scentib] and they
within the whole interva[0,t]. The owner of the capital is, yield an unusual type of microdynamics of more general
in general, interested to augmentt). Regardless the fluc- interest. Another approach related directly to our intentions
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consists of modeling the dynamics of money diredtlg], ap(t)=p(t)[r—up(t) FR(t)],
the dynamics of which is studied by an evolution equation
completely different to our one. AR(t)=|\|p(1), 4

In the present paper we introduce an analytical model for

a certain amount of monepg(t) available for one owner. where the upper sign corresponds\te 0. Apparently in this

This money is a part of the total capital flow and, therefore case the memory term is the counterpart to the growthrrate

subjected to a lot of influences that cannot be specified ifror the further discussion it seems to be more appropriate to

detail. Comparing with the situation in statistics the lastuse the set of Eq¢4). Using those equations one can easily

quantity corresponds to the many particle distribution funcfind a differential equation fop(R), the solution of which

tion. Our interest is, however, devoted to a single “particle” reads

function. Following the well established projector formalism

due to Ref[13], see alsd14], the reduced evolution equa- N

tion should offer an additonal memory kernel as successfully P(R)={ Po— Ps+ 2 exy{ - NR) + Si? U

demonstrated in deriving a nonlinear evolution equation of (5)

Fokker-Planck typ¢15] the form and the relevance of which

are discussed by analytiddl5] and numerical method46].  where the upper sign corresponds to a positive cumulative

Notice that the approach had been very fruitful in studyingparametei >0. The set of coupled Eqé4) or the separatrix

the freezing processes in glas4dg,18. We believe that (5) can be used to derive some general predictions for the

memory effects are a feature of dynamical complex systemgomplete model that will be discussed in the subsequent sec-
tion. In the limting caseu—0 the separatrix is simply a

Il. THE CUMULATIVE FEEDBACK COUPLING parabola

N _R

The model considered is an extension of the Lotka- r )
\olterra model under the inclusion of a cumulative feedback P(R)=po+ NRJ“WR (6)
term. The simplest version is defined by
with po=p(t=0). The casai=0 exhibts an exact solution
t \ ) :
é’tp(t)=rp(t)—up2(t)—>\p(t)fo o(ty)dt,. ) presented in the following section.
Ill. RESULTS
The first term corresponds to a gain term, the second one is a
loss term providedi>0. As demonstrated in the following
section the model can be solved exactly in case=eD. The Firstly let us consider the case when the instantaneous
last term describes a kind of meticulous memory. All change$0ss term is absent, i.eu=0. The solution of Eq(1) with
in the past such as mutations of the species or a climatthe initial valuep, is
change leading to desertification or overfertilization resulting

A. The caseu=0

in a salinization have an influence of the growth or death (1+A)%e 1

rate. In the same sense a wrong financial investment or a P t):p°(1+Aet/T)z with 7= JrZ+ 2npg.
miscarried speculation contribute in a cumulative manner to 0
the present disposable amount of money. The model had 1—r7

been discussed before in REI9] to illustrate various math-
ematical methods that may be applied to solve such a non-
!cligﬁaarmrgoddiglér;iri, Wei \?/ant to glstcussf t?e pnh)iljlcfl dr%al;Z?'Note that the result can be also extended to a more general
| . pecial cases nat so far considered belo ?ﬁemory term of the kindR(t) =|\|[Hdt, p¥(t,) with an ex-
n particular, we study both casas>0 as well as\ <0. =1 In that th luti d

If A=0 the model can be even solved exactly. In the Iongponen p=2~. [N that case the solution reads
time limit the model yields a finite stationary value

)

“1trr

(1+ A)Z/[Let/;LT

t — -
pP(t)=po (Lt Ac/2H

lim p(t)Epszg if N=0. (2
e with modified parameteré and 7. The feature of this sim-
, _ plified version of Eq.(1) with u=0 is a direct coupling of
In the general case the model can be analyzed introducinge jnstantaneous populatigit) to its initial valuep,. This
the variable coupling is further manifested in the two different cases dis-
. cussed now.
R(t)= mj dt;p(ty). 3) (i) If r7<1, the parameteA is positive that is realized in
0 case ofApy>0. In Fig. 1 the analytical solution is depicted
as the solid line whereas the dotted line denotes the numeri-
The basic Eq(1) can be written in a phase space represen€al solution of the evolution equation. The slight discrepancy
tation as is due to the still rather large discretization interval. Starting
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FIG. 1. Analytical solution(solid line) of Eq.
(1) with u=0 andp(0)=0.1 vs a numerical so-
lution (dotted ling with time-steps widthAt
=0.1. All quantities are dimensionless.

with a finite and positive initial valug,>0 the system
reaches a maximum after a finite time

1 r2+ 2 po+r
tm= n . (8)
Vr2+28py | Vr2+2\py—r
The maximum gain is
r2
Pm=P(tm) ~ Po=55 ©

After reaching the maxima the cumulative term offers its

toxic effect. The number of the population is decreased to the

initial value after 2,,,. In the long time limitt— o the popu-
lation becomes extingbr the whole money is lostThe bad
conditions summed up from the initial tinte=0 up to the
instantaneous timefavors the extinction. Notice that there is
no slowing down of the relaxation time.

(i) If r=>1, realized forApy<0 the system tends to a
singular behavior after the finite tintg=t,,. The evolution
results in a crash after that finite time interval providagd
>0. Whereas unfavorable external conditions wkh-0

B. Additional loss term u#0

In this section we discuss the solution of the general
model defined by Eq(l). For u#0 the coupled set of Egs.
(4) or alternatively the separatrig(R) Eg. (5), can be used
to analyze the solution. The phase space portrait is presented
in Fig. 2. The arrows indicate that the solutions tend to the
separatrix. As suggested by the special cas® we have to
distinguish a postive or negative coupling strengthn par-
ticular, for A <0 the cumulative term is a competitive one in
comparison to the nonlinear term in Eq.(1). In case\
>0 there occurs a maximum(R,) at

In case of a negative cumulative coupling<0 it results a
minimum. Both cases can be summarized to

|

If A\>0 andpg>p,, the extremum is always positive. The

u2
1+~ (Ps=Po)

N
Re=aln

u2

M 12 (pepo)
—|)\| pS pO

1¥—In
ru

P(Re) = ps(

lead to the extinction the opposite case gives rise to the sirmaximum gain is, however, smaller than the stationary solu-
gularity at which the evolution has to stop. Remark that thetion pq, i.e., po<p(Re)<ps. In Fig. 3 we show the influ-

results presented here far=0 can be derived alternatively
using the separatrig(R) given by Eq.(6) . To that aimp(R)

is inserted into the second E). As the solution we get
R(t) that is anew inserted in Ed4). From here it results
p(t) in accordance with Eq7). In particular, the singularity
observed for negative is obtained from Eq(4) by

1 )
T | dutpctr =t (10

In case of a positiva the corresponding equation has no real

solution, i.e., there is no singular behavior in accordance

with Eq. (8).

ence of the loss termp? in Eq. (1). As discussed above the
populationp(t) reaches a maximum and tends to zero in the
infinite time limit. The generic behavior is identical to that
for u=0. Insofar, the parametar is irrelevant. However,
some details as the height of the maximum and the time after
that the maximum is reached depends on u. The largee
smaller is the maximum gain. The numerical results depicted
in Fig. 3 are in accordance with the analytical approach be-
cause we findp(R) <p., wherep,, is given by Eq.(9). In
particular, based on E@5), it results for smalu

r2
+0(u?).

ur
P(Re)=Pm= 5| Pot 3y
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Furthermore, the maximum is reached after a shorter time 1 p 2 1.
interval t,,(u)<t,,(u=0). In Fig. 4 the role played by the E—2<p) t|)\|p:§w2+)\ew with  w(t)=Inp(t).

cumulative loss term\>0 is analyzed. Whereas for=0 (12)

the stationary value, obtained for—o is simply ps=r/u.

Already an arbitrary small cumulative coupling>0 leads  \y« find

to a toxic stationary solutiop(t—)=0. Any kind of mis-

managment in the past gives rise to a decay(f). The dE y

maximum value of the amount of money decreases with an ““—_F with F:up— (13)
increasing positive cumulative coupling. This result is also in dt

accordance with the analytical findings. As discussed in Sec.

Il A a negative feedback <0 exhibits a crash after a finite using the complete basis equatiél). The additional loss
time interval. This situation reminds to the resonance catagerm plays the role of a dissipative term. The corresponding
trophy for small vibrations. As in that case the catastrophyequation of motion can be solved and is given in terms of the
can be prevented by including a friction term the role ofLambertW function. Let us further discuss the behavior in
which is adopted by the termp?(t) in Eq. (1). Because Eq. case ofA <0 andu#0. In Fig. 5 we show that the crash time
(1) is equivalent to a second order differential equation, comis, see Eq(10), is shifted to infinity. The slope of the curves
pare also Eq(14) it is appropriate to introduce the first in- are proportional tg\|/u, i.e., the population develops an

tegral (energy by the relation essential singularity with respect to the paramatét results
0.6
0.5
0.41

olt) FIG. 3. Numerical solution of Eq(l) with
037 fixed dimensionless parameter 1 and different

valuesu=0.05;0.2;0.5;1.0;2.0;5.0.

0.2
0.1
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0.8+

0.6 FIG. 4. Numerical solution of Eq(1) with
pM fixed parameteru=1 and different values\
=0,;0.05;0.1;0.2;0.5;1.0;2.0 in dimensionless
0.4+ units.
0.2+

p(t)<exp(\|t/u). The numerical result can be confirmed by coupling theu term is strongly relevant. This behavior is
an analytical approach. Starting with E@) or alternatively =~ apparently because far<O there is only a single loss term
with Eqg. (13) the basis equation reads in terms of the vari-proportional top?.

ablew(t) =Inp(t) Notice that one can verify the essential results of this
paper using a discrete version of our basis @g. To that
aim let us replace(t) by p, wheret=nAt. Eq. (1) is re-

d?w ;

dt?

dW+)\
Ydt

Prs1=(r+1)py— (U+N)PE—Apn(Po+ Pyt - - 'pn—lz- 5
1

An asymptotic solution is obviouslw= —\/u. A linear sta-
bility analysis reveals that the solution is stableNi#<0.  The fixed point of this equation reads for large n
From here we conclude the asymptotic behavior

r

pre=—
N U+AnAt’
p(t)=ex

—t
u
ForA>0 we getp* =0 for n—oo. In case\ =0 it results the

. . . . conventional stationary valug/u. If A<O0, the system re-
according to Eq(5). In Fig. 5 the functionw(t) is presented | i< 4 singularity aftens=u/|\|At
s )

for different values of the parameter Whereas in casa
=0 a singular behavior is observed in line with the anayltical
result, an arbitrary small value af shifts the singularity to
ts—o0. Therefore, in case of a negative cumulative feedback |, this paper we have made an attempt to study the time
evolution of a certain population available as initial popula-
w tion py under the influence of an additional cumulative
25 memory term. However, there are also other motivations
from ecology, economy, and politics for such a kind of
model. Thus, the flow of the money is not only determined
by the actual input and output of the asset but in an essential
way by the accumulation rate at a previous time. Likewise in
an election the vote is not only determined by some instan-
taneous decisions but by a kind of feeling accumulated by
decisions in the past. We are aware that the finding of the
feedback coupling is a rather complex problem because it is
influenced by a lot of parameters which can change during
t the time evolution of the population. The parameters are
2 4 6 8 10 . . : . .
fixed by the environment and all manipulations made in the
FIG. 5. w(t)=Inp(t) for negative \=—1 and different past. Here, we consider a simple model where the growing
paramtersu. The slope is given by/u. rater is replaced by a time changing growing ratg)=r

IV. CONCLUSIONS

20

15

10
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FR(t), see Eq(4) whereR(t) is a measure for all events in havior of the system in a nontrivial manner. Obviously, the
the past and depends on the populatipft) in a self- paper is concerned with a toy model, containing a single
consistent manner. Under the influence of this additionatlegree of freedom and no spatial variations. However, some
term the behavior of the system is changed totally. The diffeatures as nonlinearity and a history-dependent accumula-
ferent behavior is studied by analytical and numerical methtive term should be likewise included also in more complex
ods. The memory coupling is able to change the global bemodels.
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